
Chapter 10: Trends in Computer Architecture10-1

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Principles of Computer Architecture
Miles Murdocca and Vincent Heuring

Chapter 10: Trends in Computer
Architecture



Chapter 10: Trends in Computer Architecture10-2

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Chapter Contents
10.1 Quantitative Analyses of Program Execution
10.2 From CISC to RISC
10.3 Pipelining the Datapath
10.4 Overlapping Register Windows
10.5 Multiple Instruction Issue (Superscalar) Machines – The

PowerPC
10.6 Case Study: The PowerPC™ 601 as a Superscalar Architecture
10.7 VLIW Machines
10.8 Case Study: The Intel IA-64 (Merced) Architecture
10.9 Parallel Architecture
10.10 Case Study: Parallel Processing in the Sega Genesis



Chapter 10: Trends in Computer Architecture10-3

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Instruction Frequency
• Frequency of occurrence of instruction types for a variety of lan-

guages. The percentages do not sum to 100 due to roundoff.
(Adapted from Knuth, D. E., An Empirical Study of FORTRAN Pro-
grams, Software—Practice and Experience , 1, 105-133, 1971.)
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Complexity of Assignments
• Percentages showing complexity of assignments and procedure

calls. (Adapted from Tanenbaum, A., Structured Computer Organi-
zation , 4/e, Prentice Hall, Upper Saddle River, New Jersey, 1999.)
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Speedup and Efficiency
• Speedup S is the ratio of the time needed to execute a program

without an enhancement to the time required with an enhancement.

• Time T is computed as the instruction count IC times the number
of cycles per instruction CPI times the cycle time τ.

• Substituting T into the speedup percentage calculation above
yields:



Chapter 10: Trends in Computer Architecture10-6

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example
• Example:  Estimate the speedup obtained by replacing a CPU hav-

ing an average CPI of 5 with another CPU having an average CPI of
3.5, with the clock period increased from 100 ns to 120 ns.

• The previous equation becomes:
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Four-Stage Instruction Pipeline
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Pipeline Behavior
• Pipeline behavior during a memory reference and during a

branch.

Instruction 
Fetch

Decode

Operand 
Fetch

Execute

1 2 3 4 5 6 7 8

addcc ld srl subcc be nop nop nop

addcc ld srl subcc be nop nop

addcc ld srl subcc be nop

addcc ld srl subcc be

ld
Memory 

Reference

Time
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Filling the Load Delay Slot
• SPARC code, (a) with a nop  inserted, and (b) with srl  migrated to

nop  position.

(a)

addcc %r1, 10, %r1

ld    %r1, %r2

nop

subcc %r2, %r4, %r4

be    label

srl   %r3, %r5

(b)

addcc %r1, 10, %r1

ld    %r1, %r2

srl   %r3, %r5

subcc %r2, %r4, %r4

be    label
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Call-Return Behavior
• Call-return behavior as a function of nesting depth and time

(Adapted from Stallings, W., Computer Organization and Architec-
ture: Designing for Performance , 4/e, Prentice Hall, Upper Saddle
River, 1996).

Nesting 
Depth

Time in Units of Calls/Returns

Window 
depth = 5
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SPARC Registers
• User view of RISC I registers.

%l0

%i0

Global Variables

Incoming Parameters
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...

...

...
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Overlapping Register Windows

Globals
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Example:
Compiled

C Program

• Source
code for C
program to
be com-
piled with
gcc.

/* Example C program to be compiled with gcc */ 

main ()

{

    int a, b, c;	 
   

    a = 10; 

}	 
 	 
 	 
    

int add_two(a,b)

int a, b;

{

    int result;

    result = a + b;

    return(result);   

}

#include 
<stdio.h>

    b = 4;

    c = add_two(a, b); 

    printf("c = %d\n", c);
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gcc Gener-
ated SPARC

Code

! Output produced by gcc compiler on Solaris (Sun UNIX)

.section        ".rodata"       ! Read-only data for routine main

        .align 8        ! Align read-only data for routine main on an

                        ! 8-byte boundary	   

        .asciz  "c = %d\n"      ! This is the read-only data

        .proc   04

        !#PROLOGUE#     0

        save %sp, -128, %sp  ! Create 128 byte stack frame. Advance

                             ! CWP (Current Window Pointer)

        !#PROLOGUE#     1

    ! This is local variable a in main routine of C source program.

        st %o0, [%fp-20]     ! Store %o0 five words into stack frame.

        mov 4, %o0   ! %o0 <- 4. This is local variable b in main.

.file   add.c   ! Identifies the source program

.section        "text"  ! Executable code starts here

        .align 4  ! Align executable code on a 4-byte (word) boundary

        .type   main,#function

! Annotations added by author

.LLC0

        .global main

main:           ! Beginning of executable code for routine main

        mov 10, %o0  ! %o0 <- 10. Note that %o0 is the same as %r24.

        st %o0, [%fp-24]     ! Store %o0 six words into stack frame.

        ld [%fp-20], %o0     ! Load %o0 and %o1 with parameters to

        ld [%fp-24], %o1     ! be passed to routine add_two.

        call add_two, 0      ! Call routine add_two

        nop     ! Pipeline flush needed after a transfer of control

        st %o0, [%fp-28]     ! Store result 67 words into stack frame.

                             ! This is local variable c in main.

        sethi %hi(.LLC0), %o1 ! This instruction and the next load

        or %o1, %lo(.LLC0), %o0 ! the 32-bit address .LLC0 into %o0

        ld [%fp-28], %o1  ! Load %o1 with parameter to pass to printf
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gcc Gener-
ated SPARC
Code (cont’)

        call printf, 0

        nop     ! A nop is needed here because of the pipeline flush 

                ! that follows a transfer of control.

.LL1

        ret     ! Return to calling routine (Solaris for this case)

        restore ! The complement to save. Although it follows the

            ! return, it is still in the pipeline and gets executed.

.LLfe1

        .size   main, .LLfe1-main ! Size of 

        .align 4

        .global add_two

        .type   add_two, #function

        .proc 04

add_two:

         !#PROLOGUE# 0

         save %sp, -120, %sp

         !#PROLOGUE# 1

         st %i0, [%fp+68] !Same as %o0 in calling routine (variable a)

         st %i1, [%fp+72] !Same as %o1 in calling routine (variable b)

         ld [%fp+68], %o0

         ld [%fp+72], %o1

         add %o0, %o1, %o0 ! Perform the addition

         st %o0, [%fp-20]  ! Store result in stack frame

         ld [%fp-20], %i0  ! %i0 (result) is %o0 in called routine

         b .LL2

         nop

.LL2:

         ret

         restore

.LLfe2:

         .size   add_two, .LLfe2-add_two

         .ident  "GCC: (GNU) 2.5.8"
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Effect of
Compiler

Optimization

• SPARC code generated
with the -O optimization
flag:

! Output produced by -O optimiziation for gcc compiler



.file   "add.c"

.section        ".rodata"

        .align 8

.LLC0:

        .asciz  "c = %d\n"

.section        ".text"

        .align 4

        .global main

        .type    main,#function

        .proc   04

main:

        !#PROLOGUE# 0

        save %sp,-112,%sp

        !#PROLOGUE# 1

        mov 10,%o0

        call add_two,0

        mov 4,%o1

        mov %o0,%o1

        sethi %hi(.LLC0),%o0

        call printf,0

        or %o0,%lo(.LLC0),%o0

        ret

        restore

.LLfe1:

        .size    main,.LLfe1-main

        .align 4

        .global add_two

        .type    add_two,#function

        .proc   04

add_two:

        !#PROLOGUE# 0

        !#PROLOGUE# 1

        retl

        add %o0,%o1,%o0

.LLfe2:

        .size    add_two,.LLfe2-add_two

        .ident  "GCC: (GNU) 2.7.2"
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The PowerPC
601 Architec-

ture
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128-Bit IA-64 Instruction Word

8 bit

Template

40 bit

Instruction

40 bit

Instruction

40 bit

Instruction

6 bit

Predicate

7 bit

GPR

7 bit

GPR

7 bit

GPR

13 bit

Op Code

128 bits

40 bits
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Parallel Speedup and Amdahl’s Law
• In the context of parallel processing,

speedup can be computed:

• Amdahl’s law, for p
processors and a frac-
tion f of
unparallelizable code:

• For example, if f = 10% of the operations must be performed se-
quentially, then speedup can be no greater than 10 regardless of
how many processors are used:
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Efficiency and Throughput
• Efficiency is the ratio of speedup to the number of processors

used. For a speedup of 5.3 with 10 processors, the efficiency is:

• Throughput is a measure of how much computation is achieved
over time, and is of special concern for I/O bound and pipelined
applications. For the case of a four stage pipeline that remains
filled, in which each pipeline stage completes its task in 10 ns,
the average time to complete an operation is 10 ns even though it
takes 40 ns to execute any one operation. The overall throughput
for this situation is then:
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Flynn
Taxonomy

• Classification of architec-
tures according to the
Flynn taxonomy: (a) SISD;
(b) SIMD; (c) MIMD; (d)
MISD.

(a)

Uniprocessor

Instruction 
Stream

Data 
Stream

Data Out

Interconnection Network

(b)

Controller

PEn PE2 PE1 PE0. . .

Data 
Outn

Data 
Out2

Data 
Out1

Data 
Out0

Data 
Streamn

Data 
Stream2

Data 
Stream1

Data 
Stream0

Instruction Stream

Uniprocessor

Interconnection Network

Data 
Outn

Instruction 
Streamn

Data 
Streamn

Uniprocessor

Data 
Out1

Instruction 
Stream1

Data 
Stream1

Uniprocessor

Data 
Out0

Instruction 
Stream0

Data 
Stream0

(c)

Vector 
Unit0

Data 
In

Instruction 
Stream0

. . .

Vector 
Unit1

Instruction 
Stream1

Vector 
Unitn

Instruction 
Streamn

. . . Data 
Out

(d)
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Network Topologies

• Network topolo-
gies: (a) crossbar;
(b) bus; (c) ring;
(d) mesh; (e) star;
(f) tree; (g) perfect
shuffle; (h)
hypercube.

(a) (c)(b)

(d) (e) (f)

(g) (h)
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Crossbar
• Internal organization of a crossbar.

Source 0

Source 1

Source 2

Source 3

D
es

tin
at

io
n 

0

D
es

tin
at

io
n 

1

D
es

tin
at

io
n 

2

D
es

tin
at

io
n 

3

Control

Crosspoint



Chapter 10: Trends in Computer Architecture10-24

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Crosspoint Settings

• (a) Crosspoint set-
tings for connec-
tions 0 → 3 and 3 →
0; (b) adjusted set-
tings to accommo-
date connection 1
→ 1.

0

1

2

3

0

1

2

3

(a)

0

1

2

3

0

1

2

3

(b)

Crosspoints

Unused
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Three-Stage Clos Network

0

1

3

0

1

3

Input Stage Output Stage

Middle Stage

2 2
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12-Chan-
nel Three-

Stage
Clos Net-
work with
n = p = 6

6 x 11

6 x 11

Input Stage

11 x 6

11 x 6

Output Stage

Middle Stage

2 x 2

2 x 2

2 x 2
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12-Chan-
nel Three-

Stage
Clos Net-
work with
n = p = 2

Input Stage Output Stage

Middle Stage
2 x 3

2 x 3

2 x 3

2 x 3

2 x 3

2 x 3

6 x 6
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6 x 6

3 x 2
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12-Chan-
nel Three-

Stage
Clos Net-
work with
n = p = 4

4 x 7

Input Stage Output StageMiddle Stage

3 x 3

3 x 3

3 x 3

3 x 3

3 x 3

3 x 3

3 x 3

4 x 7

4 x 7

7 x 4

7 x 4
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12-Chan-
nel Three-

Stage
Clos Net-
work with
n = p = 3

Input Stage Output Stage
Middle Stage

3 x 5 4 x 4

4 x 4

4 x 4

4 x 4

4 x 4

3 x 5

3 x 5

3 x 5

5 x 3

5 x 3

5 x 3

5 x 3
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C function computes (x 2 + y2) × y2

func(x, y)  /* Compute (x2 + y2) ×
 y2 */
int x, y;

{

int temp0, temp1, temp2, temp3;

temp0 = x * x;

temp1 = y * y;

temp2 = temp1 + temp2;

temp3 = temp1 * temp2;

return(temp3);

}

0
1
2
3

Operation 
numbers
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Dependency
Graph

• (a) Control se-
quence for C pro-
gram; (b) depen-
dency graph for C
program.

0
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0
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1
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Arrows 
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x y
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y2

x2 + y2
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y2
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x2 y2 y2
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(b)
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Matrix
Multiplication

• (a) Problem setup for
Ax = b; (b) equations
for computing the b i.

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

x0

x1

x2

x3

=

b0

b1

b2

b3

b0  =  a00x0  +  a01x1  +  a02x2  +  a03x3

0 1 2 34 6 5

b1  =  a10x0  +  a11x1  +  a12x2  +  a13x3

7 8 9 1011 13 12

b2  =  a20x0  +  a21x1  +  a22x2  +  a23x3

14 15 16 1718 20 19

b3  =  a30x0  +  a31x1  +  a32x2  +  a33x3

21 22 23 2425 27 26

(a)

(b)
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Matrix Multiplication
Dependency Graph
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The Connection Machine CM-1

• Block dia-
gram of the
CM-1
(Adapted
from Hillis,
W. D., The
Connection
Machine ,
The MIT
Press, 1985).
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x 4096 bits/cells
---------------------
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Host
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CM-1 Router Network
• A four-space hypercube for the router network.

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

Router Address (The router 
address forms the four most 
significant bits of each of the16 
PEs that the router serves.)
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CM-1 Processing Element

12 12

A address B address 16

Truth table

4 4

Read
flag

Write
flag

4K Memory

Flags

Buffer

ALU

To Hypercube

Router
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The Connection Machine CM-5

Data Network

Diagnostic Network
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Partitions on the CM-5

Data Network

CP PN
I/O

CP PN PN PN PNCP PN

Control Network
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Fat Tree
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Parallel Processing in Sega Genesis
• External view of the Sega Genesis home video game system.
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Sega Genesis Architecture
• System bus model view of the Sega Genesis.

68000 
Processor

SYSTEM BUS

Z80 
Processor

Main 
Memory

Plug-in 
Cartridge

Programmable 
Sound 

Generator

Sound 
Synthesis 

Chip

Video and 
Sound Output 

DACs

Interface to
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Controller


