
Chapter 10: Trends in Computer Architecture10-1

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Principles of Computer Architecture
Miles Murdocca and Vincent Heuring

Chapter 10: Trends in Computer
Architecture

Chapter 10: Trends in Computer Architecture10-2

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Chapter Contents
10.1 Quantitative Analyses of Program Execution
10.2 From CISC to RISC
10.3 Pipelining the Datapath
10.4 Overlapping Register Windows
10.5 Multiple Instruction Issue (Superscalar) Machines – The

PowerPC
10.6 Case Study: The PowerPC™ 601 as a Superscalar Architecture
10.7 VLIW Machines
10.8 Case Study: The Intel IA-64 (Merced) Architecture
10.9 Parallel Architecture
10.10 Case Study: Parallel Processing in the Sega Genesis

Chapter 10: Trends in Computer Architecture10-3

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Instruction Frequency
• Frequency of occurrence of instruction types for a variety of lan-

guages. The percentages do not sum to 100 due to roundoff.
(Adapted from Knuth, D. E., An Empirical Study of FORTRAN Pro-
grams, Software—Practice and Experience , 1, 105-133, 1971.)

Statement Average Percent of Time

Assignment

If

Call

Loop

Goto

Other

47

23

15

6

3

7

Chapter 10: Trends in Computer Architecture10-4

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Complexity of Assignments
• Percentages showing complexity of assignments and procedure

calls. (Adapted from Tanenbaum, A., Structured Computer Organi-
zation , 4/e, Prentice Hall, Upper Saddle River, New Jersey, 1999.)

Percentage of
Number of Terms

in Assignments

0

1

2

3

4

≥ 5

–

80

15

3

2

0

Percentage of
Number of Locals

in Procedures

22

17

20

14

8

20

Percentage of Number
of Parameters in
Procedure Calls

41

19

15

9

7

8

Chapter 10: Trends in Computer Architecture10-5

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Speedup and Efficiency
• Speedup S is the ratio of the time needed to execute a program

without an enhancement to the time required with an enhancement.

• Time T is computed as the instruction count IC times the number
of cycles per instruction CPI times the cycle time τ.

• Substituting T into the speedup percentage calculation above
yields:

Chapter 10: Trends in Computer Architecture10-6

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example
• Example: Estimate the speedup obtained by replacing a CPU hav-

ing an average CPI of 5 with another CPU having an average CPI of
3.5, with the clock period increased from 100 ns to 120 ns.

• The previous equation becomes:

Chapter 10: Trends in Computer Architecture10-7

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Four-Stage Instruction Pipeline

Instruction
Fetch Decode Operand

Fetch
(ALU Op.

and

Writeback)

Execute

Chapter 10: Trends in Computer Architecture10-8

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Pipeline Behavior
• Pipeline behavior during a memory reference and during a

branch.

Instruction
Fetch

Decode

Operand
Fetch

Execute

1 2 3 4 5 6 7 8

addcc ld srl subcc be nop nop nop

addcc ld srl subcc be nop nop

addcc ld srl subcc be nop

addcc ld srl subcc be

ld
Memory

Reference

Time

Chapter 10: Trends in Computer Architecture10-9

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Filling the Load Delay Slot
• SPARC code, (a) with a nop inserted, and (b) with srl migrated to

nop position.

(a)

addcc %r1, 10, %r1

ld %r1, %r2

nop

subcc %r2, %r4, %r4

be label

srl %r3, %r5

(b)

addcc %r1, 10, %r1

ld %r1, %r2

srl %r3, %r5

subcc %r2, %r4, %r4

be label

Chapter 10: Trends in Computer Architecture10-10

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Call-Return Behavior
• Call-return behavior as a function of nesting depth and time

(Adapted from Stallings, W., Computer Organization and Architec-
ture: Designing for Performance , 4/e, Prentice Hall, Upper Saddle
River, 1996).

Nesting
Depth

Time in Units of Calls/Returns

Window
depth = 5

Chapter 10: Trends in Computer Architecture10-11

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

SPARC Registers
• User view of RISC I registers.

%l0

%i0

Global Variables

Incoming Parameters

Local Variables

Outcoming Parameters

32 bits

R0

R7
R8

R15
R16

R23
R24

R31

...

...

...

...

%g0

%g7

%i7

%l7
%o0

%o7

...

...

...

...

Chapter 10: Trends in Computer Architecture10-12

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Overlapping Register Windows

Globals
R0

R7

R8

R15
R16

R23
R24

R31

...

...

...

...

Ins

Locals

Outs

Procedure
A

Globals
R0

R7

...

R8

R15
R16

R23
R24

R31

...

...

...

Ins

Locals

Outs

Procedure
B

CWP = 8

Overlap

CWP = 24

Chapter 10: Trends in Computer Architecture10-13

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example:
Compiled

C Program

• Source
code for C
program to
be com-
piled with
gcc.

/* Example C program to be compiled with gcc */

main ()

{

 int a, b, c;	

 a = 10;

}	
 	
 	

int add_two(a,b)

int a, b;

{

 int result;

 result = a + b;

 return(result);

}

#include
<stdio.h>

 b = 4;

 c = add_two(a, b);

 printf("c = %d\n", c);

Chapter 10: Trends in Computer Architecture10-14

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

gcc Gener-
ated SPARC

Code

! Output produced by gcc compiler on Solaris (Sun UNIX)

.section ".rodata" ! Read-only data for routine main

 .align 8 ! Align read-only data for routine main on an

 ! 8-byte boundary	

 .asciz "c = %d\n" ! This is the read-only data

 .proc 04

 !#PROLOGUE# 0

 save %sp, -128, %sp ! Create 128 byte stack frame. Advance

 ! CWP (Current Window Pointer)

 !#PROLOGUE# 1

 ! This is local variable a in main routine of C source program.

 st %o0, [%fp-20] ! Store %o0 five words into stack frame.

 mov 4, %o0 ! %o0 <- 4. This is local variable b in main.

.file add.c ! Identifies the source program

.section "text" ! Executable code starts here

 .align 4 ! Align executable code on a 4-byte (word) boundary

 .type main,#function

! Annotations added by author

.LLC0

 .global main

main: ! Beginning of executable code for routine main

 mov 10, %o0 ! %o0 <- 10. Note that %o0 is the same as %r24.

 st %o0, [%fp-24] ! Store %o0 six words into stack frame.

 ld [%fp-20], %o0 ! Load %o0 and %o1 with parameters to

 ld [%fp-24], %o1 ! be passed to routine add_two.

 call add_two, 0 ! Call routine add_two

 nop ! Pipeline flush needed after a transfer of control

 st %o0, [%fp-28] ! Store result 67 words into stack frame.

 ! This is local variable c in main.

 sethi %hi(.LLC0), %o1 ! This instruction and the next load

 or %o1, %lo(.LLC0), %o0 ! the 32-bit address .LLC0 into %o0

 ld [%fp-28], %o1 ! Load %o1 with parameter to pass to printf

Chapter 10: Trends in Computer Architecture10-15

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

gcc Gener-
ated SPARC
Code (cont’)

 call printf, 0

 nop ! A nop is needed here because of the pipeline flush

 ! that follows a transfer of control.

.LL1

 ret ! Return to calling routine (Solaris for this case)

 restore ! The complement to save. Although it follows the

 ! return, it is still in the pipeline and gets executed.

.LLfe1

 .size main, .LLfe1-main ! Size of

 .align 4

 .global add_two

 .type add_two, #function

 .proc 04

add_two:

 !#PROLOGUE# 0

 save %sp, -120, %sp

 !#PROLOGUE# 1

 st %i0, [%fp+68] !Same as %o0 in calling routine (variable a)

 st %i1, [%fp+72] !Same as %o1 in calling routine (variable b)

 ld [%fp+68], %o0

 ld [%fp+72], %o1

 add %o0, %o1, %o0 ! Perform the addition

 st %o0, [%fp-20] ! Store result in stack frame

 ld [%fp-20], %i0 ! %i0 (result) is %o0 in called routine

 b .LL2

 nop

.LL2:

 ret

 restore

.LLfe2:

 .size add_two, .LLfe2-add_two

 .ident "GCC: (GNU) 2.5.8"

Chapter 10: Trends in Computer Architecture10-16

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Effect of
Compiler

Optimization

• SPARC code generated
with the -O optimization
flag:

! Output produced by -O optimiziation for gcc compiler

.file "add.c"

.section ".rodata"

 .align 8

.LLC0:

 .asciz "c = %d\n"

.section ".text"

 .align 4

 .global main

 .type main,#function

 .proc 04

main:

 !#PROLOGUE# 0

 save %sp,-112,%sp

 !#PROLOGUE# 1

 mov 10,%o0

 call add_two,0

 mov 4,%o1

 mov %o0,%o1

 sethi %hi(.LLC0),%o0

 call printf,0

 or %o0,%lo(.LLC0),%o0

 ret

 restore

.LLfe1:

 .size main,.LLfe1-main

 .align 4

 .global add_two

 .type add_two,#function

 .proc 04

add_two:

 !#PROLOGUE# 0

 !#PROLOGUE# 1

 retl

 add %o0,%o1,%o0

.LLfe2:

 .size add_two,.LLfe2-add_two

 .ident "GCC: (GNU) 2.7.2"

Chapter 10: Trends in Computer Architecture10-17

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

The PowerPC
601 Architec-

ture

Chapter 10: Trends in Computer Architecture10-18

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

128-Bit IA-64 Instruction Word

8 bit

Template

40 bit

Instruction

40 bit

Instruction

40 bit

Instruction

6 bit

Predicate

7 bit

GPR

7 bit

GPR

7 bit

GPR

13 bit

Op Code

128 bits

40 bits

Chapter 10: Trends in Computer Architecture10-19

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Parallel Speedup and Amdahl’s Law
• In the context of parallel processing,

speedup can be computed:

• Amdahl’s law, for p
processors and a frac-
tion f of
unparallelizable code:

• For example, if f = 10% of the operations must be performed se-
quentially, then speedup can be no greater than 10 regardless of
how many processors are used:

Chapter 10: Trends in Computer Architecture10-20

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Efficiency and Throughput
• Efficiency is the ratio of speedup to the number of processors

used. For a speedup of 5.3 with 10 processors, the efficiency is:

• Throughput is a measure of how much computation is achieved
over time, and is of special concern for I/O bound and pipelined
applications. For the case of a four stage pipeline that remains
filled, in which each pipeline stage completes its task in 10 ns,
the average time to complete an operation is 10 ns even though it
takes 40 ns to execute any one operation. The overall throughput
for this situation is then:

Chapter 10: Trends in Computer Architecture10-21

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Flynn
Taxonomy

• Classification of architec-
tures according to the
Flynn taxonomy: (a) SISD;
(b) SIMD; (c) MIMD; (d)
MISD.

(a)

Uniprocessor

Instruction
Stream

Data
Stream

Data Out

Interconnection Network

(b)

Controller

PEn PE2 PE1 PE0. . .

Data
Outn

Data
Out2

Data
Out1

Data
Out0

Data
Streamn

Data
Stream2

Data
Stream1

Data
Stream0

Instruction Stream

Uniprocessor

Interconnection Network

Data
Outn

Instruction
Streamn

Data
Streamn

Uniprocessor

Data
Out1

Instruction
Stream1

Data
Stream1

Uniprocessor

Data
Out0

Instruction
Stream0

Data
Stream0

(c)

Vector
Unit0

Data
In

Instruction
Stream0

. . .

Vector
Unit1

Instruction
Stream1

Vector
Unitn

Instruction
Streamn

. . . Data
Out

(d)

Chapter 10: Trends in Computer Architecture10-22

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Network Topologies

• Network topolo-
gies: (a) crossbar;
(b) bus; (c) ring;
(d) mesh; (e) star;
(f) tree; (g) perfect
shuffle; (h)
hypercube.

(a) (c)(b)

(d) (e) (f)

(g) (h)

Chapter 10: Trends in Computer Architecture10-23

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Crossbar
• Internal organization of a crossbar.

Source 0

Source 1

Source 2

Source 3

D
es

tin
at

io
n

0

D
es

tin
at

io
n

1

D
es

tin
at

io
n

2

D
es

tin
at

io
n

3

Control

Crosspoint

Chapter 10: Trends in Computer Architecture10-24

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Crosspoint Settings

• (a) Crosspoint set-
tings for connec-
tions 0 → 3 and 3 →
0; (b) adjusted set-
tings to accommo-
date connection 1
→ 1.

0

1

2

3

0

1

2

3

(a)

0

1

2

3

0

1

2

3

(b)

Crosspoints

Unused

Chapter 10: Trends in Computer Architecture10-25

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Three-Stage Clos Network

0

1

3

0

1

3

Input Stage Output Stage

Middle Stage

2 2

Chapter 10: Trends in Computer Architecture10-26

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

12-Chan-
nel Three-

Stage
Clos Net-
work with
n = p = 6

6 x 11

6 x 11

Input Stage

11 x 6

11 x 6

Output Stage

Middle Stage

2 x 2

2 x 2

2 x 2

2 x 2

2 x 2

2 x 2

2 x 2

2 x 2

2 x 2

2 x 2

2 x 2

Chapter 10: Trends in Computer Architecture10-27

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

12-Chan-
nel Three-

Stage
Clos Net-
work with
n = p = 2

Input Stage Output Stage

Middle Stage
2 x 3

2 x 3

2 x 3

2 x 3

2 x 3

2 x 3

6 x 6

6 x 6

6 x 6

3 x 2

3 x 2

3 x 2

3 x 2

3 x 2

3 x 2

Chapter 10: Trends in Computer Architecture10-28

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

12-Chan-
nel Three-

Stage
Clos Net-
work with
n = p = 4

4 x 7

Input Stage Output StageMiddle Stage

3 x 3

3 x 3

3 x 3

3 x 3

3 x 3

3 x 3

3 x 3

4 x 7

4 x 7

7 x 4

7 x 4

7 x 4

Chapter 10: Trends in Computer Architecture10-29

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

12-Chan-
nel Three-

Stage
Clos Net-
work with
n = p = 3

Input Stage Output Stage
Middle Stage

3 x 5 4 x 4

4 x 4

4 x 4

4 x 4

4 x 4

3 x 5

3 x 5

3 x 5

5 x 3

5 x 3

5 x 3

5 x 3

Chapter 10: Trends in Computer Architecture10-30

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

C function computes (x 2 + y2) × y2

func(x, y) /* Compute (x2 + y2) ×
 y2 */
int x, y;

{

int temp0, temp1, temp2, temp3;

temp0 = x * x;

temp1 = y * y;

temp2 = temp1 + temp2;

temp3 = temp1 * temp2;

return(temp3);

}

0
1
2
3

Operation
numbers

Chapter 10: Trends in Computer Architecture10-31

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Dependency
Graph

• (a) Control se-
quence for C pro-
gram; (b) depen-
dency graph for C
program.

0
*

1

0
*

1
*

2
+

3

14
*

2
+

3
*

*

Arrows
represent
flow of
control

*

Arrows
represent

flow of data

x y

x2

y2

x2 + y2

(x2 + y2)×
y2

(x2 + y2)×
y2

x2 + y2

x2 y2 y2

(a)

(b)

Chapter 10: Trends in Computer Architecture10-32

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Matrix
Multiplication

• (a) Problem setup for
Ax = b; (b) equations
for computing the b i.

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

x0

x1

x2

x3

=

b0

b1

b2

b3

b0 = a00x0 + a01x1 + a02x2 + a03x3

0 1 2 34 6 5

b1 = a10x0 + a11x1 + a12x2 + a13x3

7 8 9 1011 13 12

b2 = a20x0 + a21x1 + a22x2 + a23x3

14 15 16 1718 20 19

b3 = a30x0 + a31x1 + a32x2 + a33x3

21 22 23 2425 27 26

(a)

(b)

Chapter 10: Trends in Computer Architecture10-33

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Matrix Multiplication
Dependency Graph

0
*

1
*

2
*

3
*

4
+

6
+

5
+

+ = 10 ns

* = 100 ns

Communication = 1000 ns

Fine Grain: PT = 2120 ns

100ns 100ns 100ns 100ns

10ns 10ns

10ns

0
*

1
*

2
*

3
*

4
+

6
+

5
+

100ns 100ns 100ns 100ns

10ns

10ns

10ns

1000ns 1000ns 1000ns

1000ns 1000ns

1000ns

Course Grain: PT = 430 ns

0ns 0ns 0ns

0ns 0ns

0ns

(a) (b)

Processor

Process

Chapter 10: Trends in Computer Architecture10-34

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

The Connection Machine CM-1

• Block dia-
gram of the
CM-1
(Adapted
from Hillis,
W. D., The
Connection
Machine ,
The MIT
Press, 1985).

…
 …
 …

…
 …
 …

…
 …
 …

…
 …
 …

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

Connection Machine

65536 cells
x 4096 bits/cells

32M bytes memory

I/O
500 M bits/sec

Host
Memory bus

Micro-
controller

Chapter 10: Trends in Computer Architecture10-35

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

CM-1 Router Network
• A four-space hypercube for the router network.

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

Router Address (The router
address forms the four most
significant bits of each of the16
PEs that the router serves.)

Chapter 10: Trends in Computer Architecture10-36

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

CM-1 Processing Element

12 12

A address B address 16

Truth table

4 4

Read
flag

Write
flag

4K Memory

Flags

Buffer

ALU

To Hypercube

Router

Chapter 10: Trends in Computer Architecture10-37

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

The Connection Machine CM-5

Data Network

Diagnostic Network

NI

PN

NI

PN

NI

PN

NI

CP

NI

CP

NI

I/O

NI

I/O

. . .

. . .

. . .Processing Nodes

I/O Interfaces

Network
Interfaces

Data
Processor
Control

I/O
Control

Control Processors

C
ontrol N

etw
ork

Chapter 10: Trends in Computer Architecture10-38

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Partitions on the CM-5

Data Network

CP PN
I/O

CP PN PN PN PNCP PN

Control Network

Chapter 10: Trends in Computer Architecture10-39

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Fat Tree

Chapter 10: Trends in Computer Architecture10-40

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Parallel Processing in Sega Genesis
• External view of the Sega Genesis home video game system.

Chapter 10: Trends in Computer Architecture10-41

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sega Genesis Architecture
• System bus model view of the Sega Genesis.

68000
Processor

SYSTEM BUS

Z80
Processor

Main
Memory

Plug-in
Cartridge

Programmable
Sound

Generator

Sound
Synthesis

Chip

Video and
Sound Output

DACs

Interface to
Hand-Held
Controller

